Basic Principles of Earthquake Loss Estimation – PML and Beyond

William Graf, Patricia Grossi, Stephanie King

Wednesday April 19, 2006 100th Anniversary Earthquake Conference Tutorial

Today's Speakers

- William Graf, MS, CE
 - Manager, Earthquake Risk, URS Corporation
 - William_Graf@URSCorp.com; 213-996-2381
- Patricia Grossi, PhD, CE
 - Manager, Earthquake Modeling, Risk Management Solutions
 - Patricia.Grossi@rms.com; 510-505-3237
- Stephanie King, PhD, CE
 - Director of Risk Analysis, Weidlinger Associates
 - sking@wai.com; 650-230-0295

Earthquake Loss Estimation Tutorial

Audience Breakdown

- Engineers (civil / structural)
- Insurance / mortgage banking / risk analysts
- Property owners / managers
- Emergency managers
- Government officials / public policy
- Earth scientists / seismologists
- Educators
- Contractors
- Building inspectors
- Architects

Earthquake Loss Estimation Tutorial 4

Basic Principles of Earthquake Loss Estimation -PML and Beyond

- Single-Site Seismic Risk

Seismic Risk Terminology

- Earthquake Hazards: ground shaking, soil liquefaction, surface fault rupture, slope instabilities, tsunami, seiche, etc.
- Seismic Vulnerability: fragility or damageability, the relationship between hazard and damage, loss or disruption
- **Risk:** the relationship between loss severity and frequency
- **Exposure:** the buildings, contents, people and processes at risk

Seismic Risk Standards

Damage Relationships:

ATC-13, ATC 13-1

Consider the difference of the

NIBS – HAZUS K.V. Steinbrugge, J.H. Wiggins, Thiel & Zsutty Seismic Risk Terminology: ASTM E 2026-99 Rapid Visual Screening: FEMA 154 Vulnerability of Buildings: ASCE 31-03 (FEMA 310) Vulnerability of Contents: FEMA 74 Rehabilitation of Buildings: FEMA 356

Qualifications for Seismic Risk

Needed: Engineering Judgment

Minimum: C.E. or S.E. + lots of experience

Seismic Risk Assessment, Individual Buildings Expertise in Seismology + Geology + Structural Engineering and Statistics

Seismic Risk Assessment, Building Portfolios Expertise in Seismology + Geology + Structural Engineering + Actuarial Science + Systems Analysis

ASTM E 2026 – 99 Levels of Investigation

Standard Guide for the Estimation of Building Damageability in Earthquakes

Higher levels of investigation are required where higher hazards exist, and/or where higher certainty is required in the result.

Assessment	Level 0 (Screening)	Level 1	Level 2	Level 3
Building Stability	Visual observation or drawing review or age and code-based	Detailed visual inspection	Engineering Review (limited/manual calculations)	Engineering review (computer modeling)
Site Stability	Assess site area, using eneral data from maps or geotechnical report	Assess site-specific hazards using maps or geotechnical report	Assess site-specific hazards and building impacts using maps or geotechnical report	Detailed (new) studies of site hazards and building impacts
Damageability	Use BS 0 investigation results and tables for basic building type. Excludes site failures.	Use BS 1 investigation results and tables or software for basic building type. Excludes site failures.	Use BS 2 investigation results and estimate damage specific to each building. Consider site failures.	Use BS 3 investigation results and estimate damage specific to each building. Consider site failures, SSI, etc.

Return Period vs. Exposure Period and Probability of Exceedance

Hazard-recurrence: Use this where loss is related to a single ground motion parameter, with no magnitude dependence Good Source: USGS National Seismic Hazard Mapping Project [2002]

Seismic Hazards - Ground shaking

Damage from ground motions: which parameter works best?

- Peak ground acceleration
- Peak ground velocity
- Spectral acceleration @ fundamental structural period
- Modified Mercalli Intensity
- Arias Intensity

Local Hazards per HAZUS

Table 10.2 PESH Module Outputs - Ground Deformation

Liquefaction HAZUS determines the probability of and expected level of permanent ground deformations for liquefaction susceptible sites during the deterministic, probabilistic, or user-defined event. a) PGD Contour Maps Landsliding HAZUS determines the probability of and expected level of permanent ground deformations for landsliding susceptible sites during the deterministic, probabilistic, or user-defined event. a) PGD Contour Maps Surface Fault Rupture HAZUS determines the probability of and expected level of permanent ground deformations for landsliding susceptible sites during the deterministic, probabilistic, or user-defined event. a) PGD Contour Maps Surface Fault Rupture HAZUS determines the probability of and expected level of permanent ground deformations for surface fault rupture susceptible sites during the deterministic, probabilistic or user defined avent a) PGD Contour Maps	Component	Description of Output	Measure
Landsliding HAZUS determines the probability of and expected level of permanent ground deformations for landsliding susceptible sites during the deterministic, probabilistic, or user-defined event. a) PGD Contour Maps Surface Fault Rupture HAZUS determines the probability of and expected level of permanent ground deformations for surface fault rupture susceptible sites during the deterministic, new user defined event. a) PGD Contour Maps Surface Fault Rupture HAZUS determines the probability of and expected level of permanent ground deformations for surface fault rupture susceptible sites during the deterministic, new look bility of a group defined agent a) PGD Contour Maps	Liquefaction	HAZUS determines the probability of and expected level of permanent ground deformations for liquefaction susceptible sites during the deterministic, probabilistic, or user-defined event.	a) PGD Contour Mapsb) Location-Specific PGD
Surface Fault HAZUS determines the probability of and expected a) PGD Contour Maps level of permanent ground deformations for surface b) Location-Specific PGD fault rupture susceptible sites during the deterministic neurophylicity are used affined as and the deterministic neurophylicity and the determinist	Landsliding	HAZUS determines the probability of and expected level of permanent ground deformations for landsliding susceptible sites during the deterministic, probabilistic, or user-defined event.	a) PGD Contour Mapsb) Location-Specific PGD
deterministic, probabilistic, or user-defined event.	Surface Fault Rupture	HAZUS determines the probability of and expected level of permanent ground deformations for surface fault rupture susceptible sites during the deterministic, probabilistic, or user-defined event.	a) PGD Contour Mapsb) Location-Specific PGD

Structural Vulnerability Assessment

Resources -- see Bibliography

Structural Evaluation

ASCE 31-03 (previously FEMA 310 FEMA 178) Building Codes (IBC, UBC, etc.)

Damage Relationships

ATC 13 "Earthquake Damage Evaluation Data for California" Steinbrugge, K.V. various publications Theil & Zsutty, EERI Spectra, 1987 Wesson et al., EERI Spectra, 2004 Porter et al, CUREE HAZUS MH

Structural Evaluation

"Wish List" for Documents for Seismic Studies

Damage Relationships

Courtesy USGS

ATC 13 [Damage Probabilit	y Matrices
Damage State	Damage Factor Range (%)	Central Damage Factor (%)
1 – None	0	0
2 – Slight	0 - 1	0.5
3 – Light	1 – 10	5
4 – Moderate	10 - 30	20
5 – Heavy	30 - 60	45
6 – Major	60 - 100	80
7 – Destroyed	100	100

Major Challenges

Modifying seismic vulnerability to reflect seismic retrofit.

How do changes in strength, ductility, period, and damping, and increased regularity and redundancy, affect damage?

9

Casualties

0

0

10

20

30 40

Relationships for injuries and fatalities Note high variance!

	Damage State	Range	Minor Injuries	Serious Injuries	Dead
1	None	0	0	0	0
2	Slight	0-1	3/100,000	1/250,000	1/1,000,00
3	Light	1-10	3/10,000	1/25,000	1/100,000
4	Moderate	10-30	3/1,000	1/2,500	1/10,000
5	Heavy	30-60	3/100	1/250	1/1,000
6	Major	60-100	3/10	1/25	1/100
7	Destroyed	100	2/5	2/5	1/5

50 60 70

Time (days)

100

80 90

GRAVE OF 1872

EARTHQUAKE VICTIMS

HISTORICAL LANDMARK NO. 507

(2)

HAZUS-MH MR1 Advanced Engineering Building Module

HAZUS-MH MR1 Advanced Engineering Building Module

- HAZUS is scenario-based (deterministic or semiprobabilistic) and it can provide expected loss (SEL).
- Uncertainty in damage state is listed, but HAZUS does not provide upper-bound loss (SUL) or Probable Loss (PL)
- High degree of user knowledge and expertise required.

Single-Site Seismic Risks

Average Annual Loss (AAL) or Expected Annual Loss (EAL) – The long-term annual loss rate

AAL is found by summing the product of each discrete loss state (Li) x its annual frequency of occurrence (f_i), over all loss states:

PD

$$\mathbf{AAL} = \sum \mathbf{L}_{\mathbf{i}} \mathbf{x} \mathbf{f}_{\mathbf{i}}$$

...mean and variance

The reduction in **Average Annual Loss** afforded by retrofit is an annual **benefit**. The present value of the loss reduction benefit can be compared with (present) cost of retrofit, to estimate a **benefit-to-cost ratio**.

Benefit/cost ratios are long-term, time-averaged **"expected values."** But retrofit for any single structure has a high uncertainty: what is the probability that it will experience earthquake hazards high enough to pay back the retrofit?

/C Results				
Total Initial Retrofit Cost : Annual Maintenance Cost :		1,300,000	(Dollars)	
		0	(Dollars)	
A	AL 'as-is' :	276,456.6	(Dollars)	Excludes
AAL '	as-retrofit' :	52,999.4	(Dollars)	Life-safe
Annu	al Benefit :	223,457.2	(Dollars)	Benefits
Present Value of Future	e Benefit :	3,435,085.5	(Dollars)	
Benefit/0	Cost Ratio :	2.64		
Return Period for Retrofit	Pay-back :	29 (Yea	rs) Pa	yback Curves
	Buildin	g Cor	ntents	Time Element
AAL 'as-is'	220,37	0 12	2,143	43,942
AAL 'as-retrofit'	43,37	5	1,881	7,742
AAL Benefit	176,99	5 10	0,261	36,200
PV of Future Benefit	2,720,84	7 15	7,751	556,486
Data 6 Casta	1 250 00	0 50	0.000	0

Benefit/Cost Analysis

Beyond BCA...

Other benefits of seismic retrofit -- not included in a simple benefit-to-cost calculation:

- enhanced life-safety (fewer deaths and injuries)
- **increased resale value** and **marketability** (i.e., salvage value and rentability)
- extended useful life for the building
- fewer customers lost due to interruption or delay of service
- possible lower insurance rates
- reduced need for insurance
- reduced demand on emergency resources

Uncertainties in Seismic Risks

Ground Motion uncertainty in the selected ground motion parameter for damage, and uncertainty in annual frequency of occurrence

Building Performance variability (damage or loss, given the ground motion parameter)

Risks from "Special" hazards (fault rupture, liquefaction, landslide, ...) are difficult to model

Glossaries, Websites GLOSSARIES Hazards: http://earthquake.usgs.gov/learning/glossary.php?alpha=All http://www.seis.utah.edu/qfacts/glossary.shtml http://www.ess.washington.edu/SEIS/PNSN/INFO_GENERAL/NQT/glossary.html StructuralEngineering: http://www.seaonc.org/public/what/glossary.html WEBSITES: United States Geological Survey http://earthquake.usgs.gov/ http://earthquake.usgs.gov/research/hazmaps/products_data/48_States/index.php California Geology http://www.consrv.ca.gov/CGS/ http://www.consrv.ca.gov/CGS/geologic_hazards/regulatory_hazard_zones/index.htm Utah Geology http://geology.utah.gov/utahgeo/hazards/index.htm http://www.seis.utah.edu/guide/guide.shtml Oregon Geology http://www.oregongeology.com/sub/default.htm Washington Geology http://www.dnr.wa.gov/geology/ http://www.dnr.wa.gov/geology/hazards/hmgp.htm Seismic Hazards In Canada http://earthquakescanada.nrcan.gc.ca/index_e.php Global Seismic Hazard Assessment Program http://www.seismo.ethz.ch/GSHAP/index.html

William P. Graf, C.E.

Manager, Earthquake Risk URS, Los Angeles william_graf@urscorp.com 213-996-2381

Single-Site Seismic Risk Bibliography

- C. Rojahn, R.L. Sharpe, (1985). ATC 13, "Earthquake Damage Evaluation Data for California," Applied Technology Council.
- S. King, C. Rojahn, (2002). ATC-13-1, "Commentary on the Use of ATC-13 Earthquake Damage Evaluation Data for Probable Maximum Loss Studies of California Buildings.
- Wesson, Robert L., David M. Perkins, Edgar V. Leyendecker, Richard J. Roth, Jr., and Mark D. Petersen, "Losses to Single-Family Housing from Ground Motions in the 1994 Northridge, California, Earthquake" Spectra, August, 2004
- Porter, K.A., Beck, J.L. and Seligson, H.A., Scawthorn, C.R., Tobin, L.T., Young, R., and Boyd, T., (2002) "Improving Loss Estimation for Woodframe Buildings." Volume 1 Technical Report and Volume 2 Appendices; CaltechEERL:2002.EERL-2002-01 and -02. Consortium of Universities for Research in Earthquake Engineering, Richmond, CA.
- Porter, K.A., Kiremidjian, A.S., LeGrue, J.S., "Assembly-Based Vulnerability of Buildings Its Use in Performance Evaluation," Earthquake Spectra, Volume 17, No. 2, May 2001.
- J.H. Wiggins, C.E. Taylor and George Yessaie, NTS Engineering, "Damageability of Low-Rise Construction," Technical Report No. 1442 (1987). Prepared under partial support of the National Science Foundation, NSF Grant No. CEE-8109607.
- K. V. Steinbrugge and S. T. Algermissen (1990) "Earthquake Losses to Single-Family Dwellings: California Experience," United States Geological Survey Bulletin 1939A. This study was made in cooperation with the California Insurance Department.
- K. V. Steinbrugge, (1982), "Earthquakes, Volcanoes, and Tsunamis," Skandia America Group.
- C. C. Thiel, Jr. and T. C. Zsutty, (1987), "Earthquake Characteristics and Damage Statistics," EERI Spectra, Vol. 3, No. 4.
- "Development of Building Damage Functions for Earthquake Loss Estimation," C.A. Kircher, A.A. Nassar, O. Kustu, and W.T. Holmes, Earthquake Spectra, November, 1997 (HAZUS Models).
- Taylor, C.E., VanMarcke, E., and Davis, J, "Evaluating Models of Risks from Natural Hazards for Insurance and Government," Appendix B in Paying the Price: The Status and Role of Insurance Against Natural Disasters in the United States, edited by Howard Kunreuther and Richard J. Roth, Sr., Washington D. C.: Joseph Henry Press, 1998.
- ASTM E 2026-99, "Standard Guide for the Estimation of Building Damageability in Earthquakes"
- FEMA 154, 155: 'Rapid Visual Screening of Buildings for Potential Seismic Hazards'
- FEMA 356, "Prestandard and Commentary for the Seismic Rehabilitation of Buildings," 2000.
- FEMA 74: 'Reducing the Risk of Nonstructural Earthquake Damage'
- HAZUS MH MR1 Advanced Engineering Building Module, Technical and User's Manual, 2003
- ASCE/SEI 31-03 "Seismic Evaluation of Existing Buildings," 2003.
- FEMA-310: 'Handbook for the Seismic Evaluation of Buildings'
- FEMA 178, "NEHRP Handbook for Seismic Evaluation of Existing Buildings", 1992.