REDARS 2 Software and Methodology for Evaluating Risks from Earthquake Damage to Roadway Systems

by

Stuart D. Werner

for presentation at

Eighth U.S. National Conference on Earthquake Engineering
San Francisco CA

April 20, 2006
<table>
<thead>
<tr>
<th>Team Member</th>
<th>Affiliation</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stu Werner</td>
<td>Seismic Systems & Engineering Consultants, Oakland CA</td>
<td>Development Team Manager, Earthquake Engineering</td>
</tr>
<tr>
<td>Sungbin Cho</td>
<td>ImageCat Inc., Long Beach CA</td>
<td>Network Analysis, Import Wizard, Hazard and Component Modeling, Software Programming Support</td>
</tr>
<tr>
<td>Craig Taylor</td>
<td>Natural Hazards Management Inc., Torrance CA</td>
<td>Risk Analysis, Earthquake Modeling, Seismic Hazard Modeling</td>
</tr>
<tr>
<td>Jean-Paul Lavoie</td>
<td>Geodesy, San Francisco CA</td>
<td>Computer Programming and Software Development</td>
</tr>
<tr>
<td>Charlie Huyck</td>
<td>ImageCat Inc., Long Beach CA</td>
<td>Import Wizard, Software Programming Support</td>
</tr>
<tr>
<td>Howie Chung</td>
<td>ImageCat Inc., Long Beach CA</td>
<td>Seismic Hazard Modeling, Software Development Support</td>
</tr>
<tr>
<td>Jim Moore</td>
<td>University of Southern California, Los Angeles CA</td>
<td>Network Analysis</td>
</tr>
<tr>
<td>Ron Eguchi</td>
<td>ImageCat Inc., Long Beach CA</td>
<td>Technical Review</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

• Project Sponsors (1993-2006)
 – Multidisciplinary Center for Earthquake Engineering Research (MCEER), Buffalo NY, and
 – Federal Highway Administration, Washington D.C

• REDARS Demonstration Project (2003-2006)
 – California Department of Transportation, Sacramento CA
PRESENTATION SCOPE

REDARS Methodology

• Future Directions
SEISMIC RISK ANALYSIS METHODOLOGY FOR HIGHWAY SYSTEMS

• Evaluate Ability of Highway System to Transport Traffic after EQ

• Estimate Losses from Damage to Highway System
 – Economic
 – Increased Travel Times to/from Key Locations
 – Emergency Response/Recovery Impacts

• For Different Risk Reduction Options
INITIALIZATION:
Input Data to REDARS

- Publicly Available Data
- Augmented Data
PUBLICLY AVAILABLE DATA: Import Wizard

- Publicly Available Databases Needed to Define:
 - Roadway Topology & Attributes
 - Bridge Locations & Attributes
 - O-D Zones & Trip Tables
 - NEHRP Site Soil Conditions
PUBLICLY AVAILABLE DATA: Import Wizard

- Publicly Available Databases Needed to Define:
 - Roadway Topology & Attributes
 - Bridge Locations & Attributes
 - O-D Zones & Trip Tables
 - NEHRP Site Soil Conditions

- Wizard Facilitates this Process:
 - Accesses Public Databases in Wizard
 - Guides User thru Input Data Development
 - Resolves Any Database Inconsistencies
 - Checks Network Model and O-D Zone Connectivity/Continuity
IMPORT WIZARD RESULTS: REDARS INPUT DATA

Consistent Network Topography and Attributes

Bridge Locations & NBI Attributes; NEHRP Site Classifications

O-D Zones and Pre-EQ Trip Tables (for Auto, Various Freight, etc.)
AUGMENTED DATA: Earthquake Walkthrough Table

- **Starting Point: Recognized EQ Models**
 - From USGS (Frankel et al., 2002)
 - From Regional Agencies (e.g., CGS, CERI, etc.)

- **Select Walkthrough Duration** (years)

- **Randomly Sample Above EQ Models**
 - Establish Number, Magnitude, and Location of EQ Occurrences during Each Year (0, 1, or more)

- **EQ Sources**
 - Known Active Faults
 - Random Areal Zones

<table>
<thead>
<tr>
<th>Year No.</th>
<th>M_w</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>124</td>
<td>6.5</td>
<td>Random Areal Source 127 $(\text{Lat}{124}, \text{Long}{124})$</td>
</tr>
<tr>
<td>628</td>
<td>5.2</td>
<td>Random Areal Source 51 $(\text{Lat}{628}, \text{Long}{628})$</td>
</tr>
<tr>
<td>1,280</td>
<td>6.8</td>
<td>Calaveras Fault (initial rupture location, rupture length and direction)</td>
</tr>
<tr>
<td>1,649</td>
<td>7.2</td>
<td>Hayward Fault (initial rupture location, rupture length and direction)</td>
</tr>
<tr>
<td>2,249</td>
<td>6.2</td>
<td>Random Areal Source 329 $(\text{Lat}{2,249}, \text{Long}{2,249})$</td>
</tr>
</tbody>
</table>
OTHER AUGMENTED DATA

- Liquefaction
- Components (Retrofits, Bridge Overpasses)
- Override of Default Component Models for any Component(s)
RISK-ANALYSIS METHODOLOGY

INITIALIZATION
(input data, model parameters)

SYSTEM ANALYSIS
(for i^{th} Simulation)

INCREMENTATION
(to Next Simulation)

AGGREGATION
(of Results from all Simulations)

Next Simulation
TYPES OF ANALYSES

• Deterministic
 – For Single Earthquake and Single Set of Other Input Parameters (i.e., Single Simulation)
 – No Uncertainties Considered

• Probabilistic
 – Analyses for Multiple Simulations
 – Accounts for Uncertainties in Earthquake Occurrences and in Estimation of Hazards and Component Performance
SYSTEM ANALYSIS (SINGLE SIMULATION)

Initialization

(System Analysis for Each Simulation)

- Estimate Seismic Hazards at Each Component Site
- Estimate Each Component’s Traffic State
- Estimate System States
- Estimate System-Wide Travel Times
- Estimate Losses from EQ Damage
SYSTEM ANALYSIS (SINGLE SIMULATION)
Estimate Seismic Hazards at Each Component Site

• Ground Motions
 – Use Any Model in REDARS Library
 – Now includes Models for CA and CUS
 – Models for Other Regions to be Added

• Liquefaction
 – At Potentially Liquefiable Sites
 – From User’s Geologic Screening and Soil Properties

• Surface Fault Rupture
 – Along Faults within Roadway System
 – Fault Attributes in Walkthrough Table
SYSTEM ANALYSIS (SINGLE SIMULATION)
Estimate Each Component’s Seismic Performance

- Component Types
 - Bridges
 - Approach Fills
 - Roadways
 - Tunnels

- Estimate Seismic Performance
 - Damage State
 - Repair Cost/Time
 - Traffic State
SYSTEM ANALYSIS (SINGLE SIMULATION)
Estimate System States

- Incorporate each Component’s Traffic State at Each Post-EQ Time into Network Model
- System States Change over Time after EQ
SYSTEM ANALYSIS (SINGLE SIMULATION)
Estimate System-Wide Travel Times and Traffic Flows

- Apply Network Analysis to Each Post-EQ System State

- Estimates how EQ-Damage to Roadway System Affects
 - Travel Times
 - Traffic-Flows
 - Trip Demands

<table>
<thead>
<tr>
<th>Days after EQ</th>
<th>Travel Time Increase</th>
<th>Reduction of No. of Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 days</td>
<td>28%</td>
<td>22%</td>
</tr>
<tr>
<td>60 days</td>
<td>12%</td>
<td>13%</td>
</tr>
<tr>
<td>150 days</td>
<td>8%</td>
<td>11%</td>
</tr>
<tr>
<td>221 days*</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

* System Recovery Time (SRT) = 222 days
SYSTEM ANALYSIS (SINGLE SIMULATION)
Estimate Losses

- Economic Losses due to:
 - Travel-Time Increases
 - Trip Reductions
 - Repair Costs

- Increases in Travel Time to/from Any Location

- Increases in Travel Time along Any Route

- Reductions in Trips to/from Any Location

<table>
<thead>
<tr>
<th>Time after EQ</th>
<th>Economic Loss/day (million dollars)</th>
<th>Total Economic Loss (billion dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 days</td>
<td>$31.44</td>
<td></td>
</tr>
<tr>
<td>60 days</td>
<td>$3.94</td>
<td>$1.41</td>
</tr>
<tr>
<td>150 days</td>
<td>$1.16</td>
<td></td>
</tr>
<tr>
<td>222 days</td>
<td>$0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>Increase in Access Time (relative to pre-EQ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7-days after EQ</td>
</tr>
<tr>
<td>Medical Center</td>
<td>44.6%</td>
</tr>
<tr>
<td>Major Airport</td>
<td>34.9%</td>
</tr>
<tr>
<td>Downtown City Center</td>
<td>21.6%</td>
</tr>
</tbody>
</table>
RISK-ANALYSIS METHODOLOGY

INITIALIZATION
(input data, model parameters)

SYSTEM ANALYSIS
(for ith Simulation)

INCREMENTATION
(to Next Simulation)

AGGREGATION
(of Results from all Simulations)

Next Simulation
INCREMENT & AGGREGATE RESULTS (for Probabilistic Seismic Risk Analysis)

INITIALIZATION

PERFORM SYSTEM ANALYSIS
(for ith year of EQ walkthrough table)

Compute Confidence Intervals (CIs) for Loss Results

Are CIs Acceptable?

Yes → End

No → To Next Year of Walkthrough Table (i = i + 1)

Calculate λ

Variance Reduction Method

(INCREMENT AND AGGREGATE RESULTS)
PROBABILITY SRA:
Los Angeles Highway-Roadway System
PROBABILISTIC RESULTS: System Performance

Economic Losses due to Repair Costs, Travel-Time Delays, and Trips Foregone
OTHER PROBABILISTIC RESULTS: System Performance (at various times after EQ)

- Increase in Travel Times to/from Any User-Designated Locations (e.g., Travel Times to/from UCLA Hospital)

- Increase in Travel Times along Any User-Designated Routes (e.g., Travel Interstate 5 from Burbank to Downtown LA)

- Reduction in Trips to/from User-Designated Locations (e.g., Trips to/from Downtown LA)
PROBABILITY RESULTS:
Component Performance

Compare Relative Vulnerability of Different Bridges
(or Assess Benefits of Retrofit of Single Bridge)
PROBABILISTIC RESULTS: Component (Bridge) Performance

- Probability of Collapse:
 - 1.6% to 3.2%
 - 0.8% to 1.6%
 - 0.4% to 0.8%
 - 0.2% to 0.4%
 - 0.1% to 0.2%
 - 0.0% to 0.1%
PROBABILISTIC RESULTS: Illustrative Decision-Guidance Application

• Objective
 – Show How REDARS 2 can be Used to Guide Seismic-Risk-Reduction Decision Making

• This Example
 – Hindsight Analysis of Actual Caltrans Bridge Retrofits
GOAL: ASSESS ECONOMIC VIABILITY OF COLUMN JACKETING OF 231 BRIDGES

Initial System with 57 Retrofitted Bridges

Proposed Column Jacketing of 231 Additional Bridges
• Financial Yield of Investment:
 – Benefit = Effectiveness of Retrofits in Reducing Present Value of Mean Economic Loss
 – Cost = Cost to Column Jacket 231 Bridges = $11,000,000
 – Compute Benefit-Cost Ratio

• Volatility of Investment:
 – Reduction in Standard Deviation (SD) of Losses due to Retrofit Program = Reduction of Investment Volatility
RESULTS

• Benefit-Cost Ratios

<table>
<thead>
<tr>
<th>Exposure Time</th>
<th>50 Years</th>
<th>75 Years</th>
<th>100 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discount Rate</td>
<td>2.5%</td>
<td>2.5%</td>
<td>2.5%</td>
</tr>
<tr>
<td></td>
<td>4%</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td></td>
<td>7%</td>
<td>7%</td>
<td>7%</td>
</tr>
<tr>
<td>Benefit-Cost Ratio</td>
<td>3.90</td>
<td>4.45</td>
<td>4.74</td>
</tr>
<tr>
<td></td>
<td>3.19</td>
<td>3.42</td>
<td>3.51</td>
</tr>
<tr>
<td></td>
<td>2.41</td>
<td>2.45</td>
<td>2.46</td>
</tr>
</tbody>
</table>

• Standard Deviation (SD) of Losses
 - Ratio of SD of Losses before and after 231 retrofits = 0.62
PROBABILISTIC RESULTS:
Convergence of Confidence Intervals

Mean Value of Economic Loss
PRESENTATION SCOPE

- REDARS Methodology

Future Directions
WHERE WE ARE NOW:
REDARS 2 Technical Features

• Multidisciplinary

• Decision Guidance Capability

• Probabilistic and Deterministic Analysis Capability

• Modular
 – Readily Accepts New or Updated Models when they become Available
WHERE WE ARE NOW:
REDARS 2 Usability Features

• Clear and Comprehensive User Manuals

• Import Wizard Automates Significant Portion of Input Data

• Default Models and Input Parameters are Changeable by User

• Variety of Possible Outputs
WHERE DO WE GO FROM HERE?

• Software Maintenance and User Support

• Additional Software Applications and Testing

• Technical and Data Updates

• Possible Future Extension to Other Hazards